SOME FEATURES OF ASSESSING THE STABILITY OF HYDROTECHNICAL STRUCTURES GIVEN THE ANISOTROPY OF THE STRESS-DEFORMED STATE OF THEIR SOIL BASES

Keywords: hydraulic structures, stability, soil base, acoustic emission, anisotropy

Abstract

The processes that cause degradation of soil properties, decrease in their strength and increase in deformability was analized. Solving the problem of determining phase velocities and vectors of elastic displacements made it possible to establish the differential coefficient of elastic anisotropy of soils that form the basis of hydraulic structures. Experimental studies of soils, which are the basis of hydraulic structures, when using ultrasonic methods made it possible to determine the factors that cause the anisotropy of elastic waves. The most informative parameter of the anisotropy of soils, which are the basis of hydraulic structures,was established. The main indicators of the manifestation of azimuthal anisotropy of bulk elastic waves were determined. The study of samples of soil bases of hydraulic structures when using the invariant-polarization method made it possible to experimentally establish the type of anisotropy and determine the value of the coefficient of elastic anisotropy of the studied samples. The angle of deviation of the elastic displacement vector from the direction of the wave normal, exceeding 90°, is a sign of possible destruction of the soil base of a hydraulic structure and enables us to localize zones of limit equilibrium.

A study of sandstone samples was carried out when using atomic force microscopy to investigate the degree of change in the microstructure of the soil bases of hydraulic structures. The use of the acoustic emission method allowed us to obtain an image of the acoustic response during laser irradiation, which made it possible to evaluate the diffraction pattern of the studied sandstone samples. It was established that a characteristic feature of the acoustic emission spectrum of the studied samples of soil bases of hydraulic structures is the presence of numerous secondary maxima. Their occurrence indicates the complexity of the material composition and structure of soil bases, in particular, a specific combination of allotigenic and authigenic minerals, cementing substances and textural features. In the case of irreversible deformations, the influence of fluid saturation manifests itself through differential-elastic effects, caused by both the crystal structure and the nature of interphase bonds, as well as the temperature, pressure and other parameters of the soil base environment of hydraulic structures.

Author Biography

Yu. A. Onanko, Institute of Water Problems and Land Reclamation of NAAS, Kyiv, 03022, Ukraine

Ph.D.

References

1. DBN V.2.4-3:2010. (2010). Hidrotekhnichni, enerhetychni ta melioratyvni systemy i sporudy, pidzemni hirnychi vyrobky. Hidrotekhnichni sporudy. Osnovni polozhennya [Hydrotechnical, energy and land reclamation systems and structures, underground mining. Hydrotechnical structures. Basic provisions]. DP “Ukrarkhbudinform.” [in Ukrainian].
2. Zotsenko, M. L., Kovalenko, V. I., Yakovlev, A. V., Petrakov, O. O., Shvets, V. B., Shkola, O. V., Bida, S. V., & Vynnikov, Y. L. (2003). Inzhenerna heolohiya. Mekhanika gruntiv, osnovy i fundamenty—Pidruchnyk (Druhe pereroblene i dopovnene) - [Engineering geology. Soil mechanics, bases and foundations—Textbook (Second revised and supplemented)]. Poltava: Yuriy Kondratyuk Poltava National Technical University. [in Ukrainian]. https://reposit.nupp.edu.ua/bitstream/PoltNTU/3101/1/M.%20L%20.%20Zocenko%20-%20Inzhenerna%20geologija.%20Mehanika%20g%27runtiv%2C.pdf
3. Chen, L., Zhao, J., & Zheng, Z. (2017). Acoustic emission characteristics of compressive deformation and failure of siltstone under different water contents. Advances in Materials Science and Engineering, 2017, 1–13. https://doi.org/10.1155/2017/4035487
4. Kuzmych, L. (2007). Development of organizational and technical measures for keeping items of hydrotechnical structures in the good condition. Materials of scientific conference of young scientists. The role of reclamation sustainable development of agriculture, 19–21.
5. Kostyuchenko, M. M. (2013). Mekhanika hruntiv—Navchalʹnyy posibnyk - [Soil Mechanics—Textbook]. Kyiv: Taras Shevchenko National University of Kyiv. [in Ukrainian]. http://www.geol.univ.kiev.ua/lib/mehanika_gruntiv.pdf
6. Caicedo, B., Martinez, A., & Vallejo, L. (2011). Assesing of crushing in granular materials using acoustic emission. 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, 1–8. http://geoserver.ing.puc.cl/info/conferences/PanAm2011/panam2011/pdfs/GEO11Paper205.pdf
7. Shvets, V. B., Boyko, I. P., Vynnikov, Yu. L., Zotsenko, M. L., Petrakov, O. O., Shapoval, V. G., & Bida, S. V. (2012). Mekhanika gruntiv. Osnovy ta fundamenty—Pidruchnyk - [Soil mechanics. Fundamentals and foundations—Textbook]. Dnipropetrovsk: Porohy. [in Ukrainian]. https://core.ac.uk/download/pdf/132412196.pdf
8. Rokochinskiy, A., Kuzmych, L., & Volk, P. (2023). Handbook of Research on Improving the Natural and Ecological Conditions of the Polesie Zone. IGI Global. https://doi.org/10.4018/978-1-6684-8248-3
9. Shutenko, L. M., Rud, O. G., Kichaeva, O. V., Samorodov, O. V., & Gavrilyuk, O. V. (2017). Mekhanika gruntiv, osnovy ta fundamenty—Pidruchnyk - [Soil Mechanics, Bases and Foundations—Textbook]. Kharkiv: Kharkiv National University of Urban Economy named after O. M. Beketov. [in Ukrainian]. https://eprints.kname.edu.ua/45175/1/2016_%D0%9F%D0%95%D0%A7_11%D0%9F%20%D0%A3%D1%87%D0%B5%D0%B1%D0%BD%D0%B8%D0%BA_%20%D0%A8%D1%83%D1%82%D0%B5%D0%BD%D0%BA%D0%BE%20%D0%9B.%20%D0%9D.%20_%D1%83%D0%BA%D1%80.%D1%8F%D0%B72-%20-05.pdf
10. Dixon, N., Codeglia, D., Smith, A., Fowmes, G., & Meldrum, P. (2015). An acoustic emission slope displacement rate sensor—Case studies. Proceedings of the Ninth Symposium on Field Measurements in Geomechanics, 743–758. https://doi.org/10.36487/ACG_rep/1508_54_Dixon
11. Dixon, N., & Spriggs, M. (2007). Quantification of slope displacement rates using acoustic emission monitoring. Canadian Geotechnical Journal, 44(8), 966–976. https://doi.org/10.1139/T07-046
12. Kui, Z., Shan-hu, R. a. N., Peng, Z., Dao-xue, Y., & Tian-ye, T. (2021). Effect of moisture content on characteristic stress and acoustic emission characteristics of red sandstone. Rock and Soil Mechanics, 42(4), 899–908. https://doi.org/10.16285/j.rsm.2020.6201
13. Prykhodko, N., Koptyuk, R., Kuzmych, L., & Kuzmych, A. (2023). Formation and Predictive Assessment of Drained Lands Water Regime of Ukraine Polesie Zone. In A. Rokochinskiy, L. Kuzmych, & P. Volk (Eds.), Handbook of Research on Improving the Natural and Ecological Conditions of the Polesie Zone, 51-74. IGI Global. https://doi.org/10.4018/978-1-6684-8248-3.ch004
14. Lin, W., Liu, A., Mao, W., & Koseki, J. (2020). Acoustic emission behavior of granular soils with various ground conditions in drained triaxial compression tests. Soils and Foundations, 60(4), 929–943. https://doi.org/10.1016/j.sandf.2020.06.002
15. Khlapuk, M. M., Shynkaruk, L. A., Dem’yanyuk, A. V., & Dmytrieva, O. A. (2013). Hidrotekhnichni sporudy: Navchalʹnyy posibnyk - [Hydraulic structures: Textbook]. Kyiv: NUVHP. [in Ukrainian]. https://nubip.edu.ua/sites/default/files/u104/%D0%93%D1%96%D0%B4%D1%80%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D1%96%D0%BA%D0%B0.pdf
16. Kuzmych, L., Furmanets, O., Usatyi, S., Kozytskyi, O., Mozol, N., Kuzmych, A., Polishchuk, V. & Voropai, H. (2022). Water supply of the ukrainian Polesie ecoregion drained areas in modern anthropogenic climate changes. Archives of Hydro-Engineering and Environmental Mechanics, 69(1), 79–96. https://doi.org/10.2478/heem-2022-0006
17. Onanko, Yu., Charnyi, D., Onanko, A., Dmytrenko, O., & Kuzmych, A. (2022). Oil and gas reservoir rock sandstone SiO2 porosity research by internal friction method. International Conference of Young Professionals «GeoTerrace-2022», 2022, 1–5. https://doi.org/10.3997/2214-4609.2022590062
18. Zhang, L., Liu, G., Wei, X., & Zhang, Y. (2023). Mechanical properties and acoustic emission evolution of water-bearing sandstone under triaxial conditions. Frontiers in Earth Science, 11, 1212095. https://doi.org/10.3389/feart.2023.1212095
19. Onanko, Y., Kuzmych, L., Onanko, A., Dmytrenko, O., Pinchuk-Rugal, T., Usatyi, S., Il’in, P., & Kuzmych, S. (2025). Influence of irradiation on indicatory surface of anelastic-elastic body of AgZn alloy. Materials Research Express, 12(1), 016516. https://doi.org/10.1088/2053-1591/adabbc
20. Zhang, D., Liu, C., Zhou, Y., & Ma, D. (2020). Characteristics of fracture mechanism and acoustic emission of rock-coal combined body with prefabricated fissure. Geotechnical and Geological Engineering, 38(6), 6245–6254. https://doi.org/10.1007/s10706-020-01432-0
21. Onanko, A., Kuzmych, L., Onanko, Y., & Kuzmych, A. (2023). Indicatory surface of anelastic-elastic properties of Ti alloys. Materials Research Express, 10(10), 106511. https://doi.org/10.1088/2053-1591/acfecc
22. Zaki, A., Chai, H. K., Razak, H. A., & Shiotani, T. (2014). Monitoring and evaluating the stability of soil slopes: A review on various available methods and feasibility of acoustic emission technique. Comptes Rendus Geoscience, 346(9–10), 223–232. https://doi.org/10.1016/j.crte.2014.01.003
23. Onanko, Y., Kuzmych, L., Onanko, A., Il’in, P., & Kuzmych, A. (2024). Anelastic internal friction and mechanical spectroscopy of SiO2/Si wafers. ECS Journal of Solid State Science and Technology, 13(4), 045001. https://doi.org/10.1149/2162-8777/ad36e0
24. Sun, X., Xu, H., Zheng, L., He, M., & Gong, W. (2016). An experimental investigation on acoustic emission characteristics of sandstone rockburst with different moisture contents. Science China Technological Sciences, 59(10), 1549–1558. https://doi.org/10.1007/s11431-016-0181-8
25. Onanko, A. P., Kuryliuk, V. V., Onanko, Y. A., Kuryliuk, A. M., Charnyi, D. V., Dmytrenko, O. P., Kulish, M. P., Pinchuk-Rugal, T. M., & Kuzmych, A. A. (2022). Mechanical spectroscopy and internal friction in SiO2/Si. Journal of Nano- and Electronic Physics, 14(6), 06029. https://doi.org/10.21272/jnep.14(6).06029
26. Smith, A., Dixon, N., Meldrum, P., Haslam, E., & Chambers, J. (2014). Acoustic emission monitoring of a soil slope: Comparisons with continuous deformation measurements. Géotechnique Letters, 4(4), 255–261. https://doi.org/10.1680/geolett.14.00053
27. Onanko, A. P., Kulish, M. P., Lyashenko, O. V., Prodayvoda, G. T., Vyzhva, S. A., & Onanko, Y. A. (2012). Inelastic-elastic properties of SiO2, SiO2 + TiO2 + ZrO2. 2012 IEEE International Conference on Oxide Materials for Electronic Engineering (OMEE), 2012, 81–82. https://doi.org/10.1109/OMEE.2012.6464790
28. Naderi-Boldaji, M., Bahrami, M., Keller, T., & Or, D. (2017). Characteristics of acoustic emissions from soil subjected to confined uniaxial compression. Vadose Zone Journal, 16(7), 1–12. https://doi.org/10.2136/vzj2017.02.0049
Published
2025-12-29
How to Cite
Onanko, Y. (2025). SOME FEATURES OF ASSESSING THE STABILITY OF HYDROTECHNICAL STRUCTURES GIVEN THE ANISOTROPY OF THE STRESS-DEFORMED STATE OF THEIR SOIL BASES. Land Reclamation and Water Management, (2), 95 - 103. https://doi.org/10.31073/mivg202502-423

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.